
ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 1 of 12

BV4611
128x64 Serial + I2C Graphic Controller
Product specification Apr 2013 V0.a

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 2 of 12

Contents
1. Introduction.. 3

2. Features... 3

3. Physical Specification ... 3

3.1. Control Interface... 3

3.2. Serial Interface ... 3

3.3. Multiple Devices .. 4

4. Handshake and ACK .. 4

5. Control Commands .. 4

6. Serial... 4

7. I2C.. 4

7.1.1. Write ... 4

7.1.2. Read ... 5

7.2. Address.. 5

8. LCD Connector .. 5

9. Start Up & Macro... 6

10. Factory Reset.. 6

11. Programming Examples.. 6

11.1. Serial... 6

11.2. I2C.. 7

11.3. Implemented Escape Codes.. 8

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 3 of 12

Rev Change

Apr.
2013

Preliminary

Jan
2014

Version 2.0
* font 3 fixed
* added to I2C esc{g
* device id reports 4611

*Baud rate initially fixed at 9600

1. Introduction
The BV4611 is a 128x64 serial graphic display
controller designed for displays that use two
KS0108B controllers.

It provides a universal serial interface that can
easily be controlled by escape commands. It
has full scrolling capability and 3 fonts.

The serial interface can be either a standard
asynchronous OR I2C, this is fully selectable
by the user.

This datasheet describes the controller and
thus the display capabilities, the controller is
normally supplied attached to a display,
however the controller can be supplied
separately.

2. Features
 Designed for displays using the

KS0108B LCD controller
 Serial interface
 I2C Interface
 Three fonts
 Baud rate selectable by the user,

initial rate 9600
 Up to 21 characters by 8 lines
 Graphic drawing, lines, pixels, circles

rectangles filled or not.
 I2C address set by user
 Back light control
 ACK mechanism to eliminate the

need for hardware handshaking
 Voltage: 3.3V or 5V (see text)
 Size: 53x22mm

3. Physical Specification

Controller with display

The controller can be supplied with an LCD
display attached. Where this is not the case
please make sure that the controller is suitable
for your display. This kind of display is no
where as near standardised as the character
types and so the interfaces vary considerably.

Rear view, typical

3.1. Control Interface

The device has a connector that can either be
used for serial or I2c. This is user selectable
option, see the section on I2C for more details.

3.2. Serial Interface
The serial interface has 5 pins, one of the pins
is not used.

Pin Function

5 Ground

4 not used

3 +V (3.3 to 5V)

2 TX

1 RX

The serial connector will mate directly with the
BV101/3 .

The board will operate from 3.3V and work
correctly on 3.3V logic. It will also operate at
5V and work with 5V logic. Most LCD displays
however require 5V and the display supplied
by ByVac will need a minimum of 4.9V to
operate correctly.

RX This is the serial receive and expects
signals 0 to +V. The idle state is high. The
input is a standard byte frame of 1 start bit 8

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 4 of 12

data bits and 1 or 2 stop bits. In other words a
standard asynchronous serial signal.

NOTE the interface will NOT directly accept
voltages from a standard COM port that
output +ve and negative voltages. There must
be some kind of voltage translation, see the
BV103 at www.byvac.com which is an ideal
convertor but any USB to serial interface will
do.

TX This is the output from the device.

+V Is the main power supply for the device
which should be capable of providing sufficient
current when the display is connected. Most
LCD device will not work correctly if the
voltage is below 5V. The maximum voltage the
device can accept is 5.5V

3.3. Multiple Devices
Only one device at once can be used on a
serial bus. For multiple devices use the I2C
interface.

4. Handshake and ACK
The ideal interface would implement the
hardware handshaking mechanism using
RTS/CTS. This is where the device’s RTS is
connected to the host CTS, when the device is
busy, it raises the RTS line and the host
temporarily stops transmitting.

Where it is not possible to do this and also
where software can be simplified, the ACK
mechanism is available. This is switched off by
default and so must be enabled using the
appropriate command.

Because the device takes a finite time to carry
out a command, say clearing the screen, it is
useful to have an indication of when that has
happened (completed) and more accurately
when the device is ready to accept another
command. This is what the ACK mechanism is
for. When enabled and when the device has
completed a command and is ready to accept
another command it will send an ACK
character. The actual character (value from 1
to 255) can be specified by the user.

Not all commands will send an ACK where this
is so it is indicated on the command table.
Sending plane text for example does not send
an ACK character. To get round this without
resorting to a hardware handshake a
command is provided that will just return the
ACK character.

If this is used for every 60 or so characters
sent, if the buffer is filling up then sending this
character and waiting for the ACK will
effectively empty the buffer so more
characters can be sent.

5. Control Commands
There are TWO distinct methods of controlling
the device, one is by serial commands and the

other is by I2C. Only one can be active at any
one time, see the section on I2C for how to
activate this method of command.

The device when used serially is controlled by
issuing control commands that always begin
with and escape byte (0x1b). The escape is
followed by various sequences to make up
individual commands.

The command is accepted as soon as the last
byte of the command is entered, so for
example when clearing the screen with esc[2J
the screen will clear as soon as ‘J’ is entered.

6. Serial
The serial interface uses 1 start bit, 8 data bits
and 1 or 2 stop bits, no parity. By default the
Baud rate 9600. The user can change this.
The rate is selected from the following rates:

2400, 4800, 9600, 14400, 19200, 38400,
56700 and 115200

No other rates are acceptable and so the host
must be set to one of these. It is possible to
fix one of these rates (see the command
table).

There is a sign-on screen that will indicate
when the device is in serial or I2C mode

7. I2C
(Default address 0x68, 8 bit) (0x32, 7
bit)

Function SCK GND SDA +V

Pin 1 2 3 4

The device can operate from serial OR I2C.
This is determined by the SDA line which,
when disconnected, is held low by a high value
resistor. The mode is determined at reset or
switch on.

With no I2C bus connected the SDA line is low
and thus the device detects this and starts up
in serial mode. With an I2C bus connected the
pull up resistors on the master or bus hold this
line high and the device goes into I2C mode.
The mode remains until reset.

It should be obvious that this device does not
have any pull-up resistors, these are normally
provided on the master device or on the bus
by two discrete pull up resistors.

The commands entered are exactly those that
are used for the serial communication. In
order to give some examples the following
notation is used.

7.1.1. Write
1. Send start condition

2. Send device address with write

3. Send command

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 5 of 12

4. Send stop condition

7.1.2. Read
1. Send start with write

2. Send device address with write

3. Send command

4. Send restart condition with read

5. Read bytes

6. Send stop condition

ALL commands on this device begin with a
write, even commands that read something a
command is sent first. There is a notation that
is used in the examples as follows:

‘s’ means send the start condition and device
address with write. i.e. the least significant bit
is set to 0 telling the I2C device that the next
byte should be written to the device.

‘number’ A number will simply be sent to the
device.

‘r’ This is the restart command; it sends a stop
condition followed by a start condition and the
device address with the read bit set (LSB set
to 1). The device will now send out bytes that
are clocked by the master.

‘g-n’ will clock ‘n’ number of bytes out of the
device, ‘g-3’ will get three bytes.

‘p’ is the stop condition.

This is the notation that is used for the
BV4221, USB to I2C convertor, for more
information about this visit www.byvac.com or
www.i2c.byvac.com

As an example, to send clear screen to the
display which is esc[2J the following would do,
all values in hex

s 1b 5b 32 4a p

Note that the ‘32’ above is the ASCII code for
2. To illustrate this point further to move the
cursor to line 3 column 21 would need the
command esc[3;27H which would be:

s 1b 5b 33 3b 32 37 48 p

7.2. Address
The I2C address is set to 0x68 by default.
This is the 8 bit address which includes the
read/write bit the 7 bit address would be 0x34.

This can be changed to any address in the
range 2 to 254 by the command given in the
command table.

8. LCD Connector
The controller is designed to operate a specific
type of display as supplied by ByVac, however
it may well be possible that these can be
obtained elsewhere. The information given

here should help determine if an alternative
display is suitable.

The connector is a row of pads at the top of
the PCB, pin 1 is marked.

Pin Function

1 GND

2 +V

3 Vo

4 RS

5 WR

6 E

7 DB0

8 DB1

9 DB2

10 DB3

11 DB4

12 DB5

13 DB6

14 DB7

15 CS1

16 CS2

17 RESET

18 Vee

19 LED-A

20 LED-K

D0-D7: Data lines, output and input for
writing to the display and reading from it.

E & RS: Control lines for the display, output.

R/W: Controls the direction of the data lines,
output

Vee & Vo: VOUT is an output voltage from
the display. This goes to a potentiometer the
centre tap of which goes to Vo to control the
contrast. The potentiometer is in the form of a
trimmer on the board.

+V & GND: These are connected directly to
the +V and GND on the input connector.

CS1 & CS2: Control which LCD controller
(KS0108B) is selected.

RESET: Is an input that resets the display,
this is invoked when the BV4613 is powered
up or the reset command is issued.

Pin 19 & 20 (back light): Pin 19 goes to the
back light on the display and pin 20 goes to a
switching transistor through a very low ohm
value resistor. When on pin 20 is more or less
connected to grround.

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 6 of 12

9. Start Up & Macro
By default the start up screen gives
information as to what interface is being used,
I2C or Serial and in the case of serial it will
inform the user when communication has been
established, or more accurately when the
Baud rate has been determined. By default
when this happens the controller will also send
‘*’ to indicate to the host that communication
is established.

The user can specify a macro that will replace
the start up screens, the macro can consist of
commands and text so there the only limit as
to what can be shown on the screen is the
number of bytes that can be saved, see the
command table for this information.

It may not be desirable to have anything on
the start up screen in which case it can be
switched off.

10. Factory Reset
Using the appropriate commands defaults can
be set that in certain circumstances make the
device difficult to communicate with. For
example if an unknown address has been
inadvertently set.

In this case there is a hardware option for
setting all of the defaults back to a known
condition. To do this use the following
procedure:

1. Remove the power

2. Short out two pads on the PCB, this is
pad 2 and 4 as shown below in yellow.
(pad 1 is a square shape)

3. Apply power

4. Remove power and remove the short.

The device will now be restored to its factory
defaults.

11. Programming Examples
The following shows some typical examples
using a C like language. The routines have not
been tested and are here for example only:

com_putc(n); puts a character ‘n’ to the open
com port.

com_puts(s); sends a sting to the open com
port.

com_getc(); gets a character from the open
com port.

The examples assume that a com port has
been opened.

11.1. Serial
Initialisation; when the device is set for
autobaud consists of sending byte 13 (CR) and
waiting for a response. In this example the
ACK mechanism will be activated as there is
no HW handshake available

int initialise()
{
int j;
char c;

com_putc(13);
j=10;
while(j--) {

 c=com_getc();
 if(c=’*’) break;
 delay(1); // ms

}
if(j) { // initialised ok if J!=0
 // send esc[6E
 com_putc(27);
 com_putc(91); // [
 com_putc(6);
 com_putc(69); // E
}
return j;

}
The above will return not 0 if initialised
properly or 0 otherwise. The options here are
to control the reset line with hardware and
have the software try again but this should not
be necessary.

The device has also been initialised so that
commands send back char(6) when finished.

Sending Commands

void vt_cmd(char* cmd)
{
int j=10; // set to time out
char c;
 // send command
 com_putc(27);
 com_puts(cmd);
 // wait for ACK
 while(j--) {
 c=com_get();
 if(c==6) break;
 // some delay or bigger timeout
 }
 // if j==0 then handle an error
}
When using the ACK system the above will
wait for the ACK to be returned before
proceeding

Sending Text

void vt_text(char* s)
{
int j=0;
 while(*s) {
 com_putc(*s++);
 j++;
 if(j > 60) {
 vt_cmd(“[e”)

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 7 of 12

 j=0;
 }
 }
}
When sending text, in order to ensure that the
device buffer does not become full, text is sent
char by char and the special ACK command is
used. This will stop filling the buffer until the
command is received and acknowledged.

NOTE: The above routine complexities are
only necessary when hardware handshaking is
not available. If it is then simply send to the
com port.

11.2. I2C
The ACK is not necessary for I2C, however
clock stretching is essential and the master
must provide this. Any errors of the type that
work up to a point, i.e. only half a page of text
is sent instead of a full one is because the
master is not recognising clock stretching
properly.

The following example will position the cursor
on line 4, column 27. The command for this is
esc[4;27H

void i2c_pos()
{
 i2c_start(); // send start condition
 i2c_send(0x68); // send i2c address with
write set
 i2c_send(27); // esc
 i2c_send(91); // [
 i2c_send(34); // 4
 i2c_send(59); // ;
 i2c_send(32); // 2
 i2c_send(37); // 7
 i2c_send(72); // H
 i2c_stop(); // stop condition
}
Note that the line and column positions are
specified as ASCII codes rather than actual
binary values. A function could be devised to
do this automatically

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 8 of 12

11.3. Implemented Escape Codes
In the table columns indicate:

S is the VT100 standard, Y is standard, P is partially standard, N is non-standard

Code is the escape sequence to invoke the command

DEF column shows the default values from the factory, and F in this column will indicate that this value will be stored when writing the EEPROM

ACK column indicates that this command is capable of sending an ACK character when it has finished.

Grayed out cells are not implemented on this device. Unless otherwise stated all numbers are in decimal.

S Code DEF ACK Name Description

Cursor Movement and Text Placement

Y LF Line feed (10) Moves the cursor down one line, if the cursor is on the last line then the command is ignored.

Y CR Carriage return (13) Moves the cursor to the beginning of the current line

Y BS Back space (8) Moves the cursor back one space and deletes the character immediately to the left before moving the
cursor. When the cursor reached the left margin it stops.

Y esc[<row>;<col>H Y Move cursor to line and
column

Moves cursor to specified line and character position. The row and column values are effected by the
current font. For the standard font the row value will be between 0 & 7 and the column between 0
and about 31. Zero is the top left and so esc[0;0H will move the cursor to the home position. Values
out of range will be ignored.

This command is generally used for text and will place the cursor on a text boundary rather than a
pixel boundary. For more precise pixel level positioning see the graphics and pixel drawing
commands.

Y esc[<num>A

esc[A

 Y Move cursor up. Moves the cursor up one or more lines, specified on its own ‘esc[A’ it will move the cursor up one
line, specified with a number it will move the cursor up that many lines. When the cursor reaches the
first line subsequent calls are ignored.

esc[A can be used instead of esc[1A

Y esc[<num>B

esc[B

 Y Move cursor down. As esc[<num>A but moves cursor down, this is the equivalent of line feed.

esc[B can be used instead of esc[1B

Y esc[<num>C Y Move cursor right. As esc[<num>A but moves the cursor to the right.

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 9 of 12

esc[C esc[C can be used instead of esc[1C

Y esc[<num>D

esc[D

 Y Move cursor left. As esc[<num>A but moves cursor to left.

esc[D can be used instead of esc[1D

Y esc[H Y Cursor home Moves cursor to home position does not clear the display. This is the same as esc[0;0H. The home
position is top left.

System Settings

N esc[<num>E Off ACK Sets and activates the ACK character as an alternative to hardware handshake. Some commands will
send a character to the receiving device, this can be used to determine when the command has
fished. The host can wait for this character before sending the next command. To set up the ACK to
send ‘X for example the following is used:

esc[88E

88 Is the ASCII code for ‘X’. To turn off the ACK system use esc[0E (esc[zeroE).

N esc[e Y ACK This will return the ACK character regardless of the ACK setting. This command can be useful for
commands that don’t normally return ACK and there is no hardware handshake.

N esc[?10a On F Y Add Line Feed Adds Line feed when CR is received as some terminals only send CR

N esc[?10b Y Remove Line Feed Turns off the additional line feed set by esc[?10a

Y esc[?25I Y Hide cursor turns the cursor off

Y esc[?25h On F Y Show cursor turns the cursor on

N esc[?26n Y No Scroll Stops the display from scrolling, this can be useful for graphic presentations as when the text gets to
the end of the line, the cursor will move to the next line. This can have an undesirable effect on the
contents of the display.

When this is set the cursor will move to the top of the display when it reached the end of the display.

N esc[?26y On F Y Scroll on Reverses the effect of esc[?26n, this is the default.

N esc[?26I Y Back light off Turns off the back light

N esc[?26h On F Y Back light on Turns the back light on

N esc[<n>f Cursor Flash Rate Sets cursor flash rate. This is an arbitrary number, the larger the number the slower the flash rate,
the default is 30000

esc[20000f

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 10 of 12

N esc[<n>b Sets Baud rate Seta an alternative Baud rate to the default 9600. Set <n> to be the new Baud rate. The rate is
selected from the following:

1 = 2400;
2 = 4800;
3 = 9600;
4 = 14400;
5 = 19200;
6 = 38400;
7 = 56700;
8 = 115200

For example to set the Baud rate to 38400:

esc[6b

The effect will be immediate but only temporary, until the device is reset or power cycled. To f fix
this rate and any other settings follow the command with esc[?27D, at the new Baud rate of course.

N esc[?27D Y Writes defaults to
EEPROM

Any variable indicated by an ‘F’ in the ‘DEF’ column of this table will be written to the EEPROM. This
means that when the device is reset or switched on the new values will take effect (whatever the
user has set them to) rather than the factory defaults.

N esc[?27M Y Writes a sign on message
to the EEPROM

All characters that follow this command will be displayed on sing on, providing the Com Flag is active
(it is by default). The characters can consist of any command so lines and other items on this table
can be included. To terminate the command use two escapes. As an example this will display “Hello
World” at start uo:

esc[?27MHello World<esc><esc>

To turn off the macro use:

esc[?27M<esc><esc>

If the macro is active, i.e. something in it then the default sign on will not be displayed. The
maximum number of characters is 150.

NOTE: The macro will turn off the default screens.

N esc[<num>a Y Set I2C Address This will set the I2C address and must be followed by EEPROM write. The new address will not take
effect until reset. The default address is 0x68 (104). As an example to set the address to 0x42 (66) :

<esc>[66a<esc>[?27D

Both of the commands must be specified although the write to EEPROM command does not need to
directly follow this command.

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 11 of 12

IMPORTANT An even number MUST be specified to give a valid 8 bit address, the device will not work
if an odd address is specified, the device does not check the address you enter.

N esc[?31d Y Device ID Returns device ID as a number

I2C: This is returned as a 16 bit value, in two bytes, high byte first.

N esc[?31y On

F

 Com Flag (0n) When communication is established with the device, i.e. at switch on or when the auto Baud
mechanism has selected the correct Baud rate, ASCII code 42 ‘*’ is sent to indicate this has
happened. This commands switches this on, it is on by default

N esc[?31n Com Flag (off) Switches the flag off see esc[?31y

N esc[?31f Y Firmware version Returns firmware version, this is a 16 bit number

I2C: This is returned as a 16 bit value, in two bytes, high byte first.

 esc[?32d Debug Shows the input as hex rather than text, this is useful for seeing what is actually being sent to the
display when trying to figure out command sequences. The only way out of this mode is to reset the
display.

P escc Reset device Carries out a software reset

Font and display settings

P esc(1 On F Y Font size 1 This is normal font with a character size of 6x8

P esc(2 Y Font size 2 This is a bold font with a character size of 8x8

P esc(3 Y Font size 3 This is a double height font with a character size of 8x16

N esc[I Y Invert Inverts the font colour and background each time it is called

Screen clearing

Y esc[2J Y Clear screen Clears display and homes cursor

N esc[3J Y Clear screen and reset all
defaults

Clears display, homes cursor and resets to the defaults values. Note if the values have been set by
the user then this will use those values.

Y esc[K Y Clear line from cursor
right

All characters are cleared form the cursor to the end of the line, the cursor remains where it is and
the character under the curser is also erased. (clear right)

Y esc[1K Y Clear line from cursor left The characters are cleared form the display starting at the beginning of the line to the current cursor
position. The cursor remain where it is. (clear left)

ByVac Product Specification

128x64 Serial + I2C Graphic Controller BV4611

©ByVac Page 12 of 12

Y esc[2K Y Clear entire line The whole current line is cleared and the cursor remains where it is. (clear all)

Graphic Commands and Pixel Drawing

 NOTE Curly brackets When used for drawing and bitmap commands co-ordinates are specified with a non-numeric
character between, for example a space, comma or something else. The x co-ordinate is the width or
horizontal which can have a value of 0-191 and the y co-ordinate is the height that can have a value
0-64. Example of valid co-ordinate specifications:

esc{10 10 30 30L or esc{10;10;30;30L

Drawing is carried out using the current foreground and background colours. Some commands have
alternative formats where shown. When the co-ordinates are not given the current co-ordinates are
used.

N esc{x0 y0 x1 y1L

esc{x1 y1L

 Y Draws a line Draws a line in any direction from the co-ordinates x0,y0 to x1,y1. There must be a non-numeric
character between the co-ordinates, this is acceptable esc{10,10,40,40L or esc{10;10;40;40L

N esc{ x0 y0 x1 y1R

esc{x1 y1R

 Y Draws a rectangle The co-ordinates are the top left and bottom right of the rectangle

N esc{ x0 y0 x1 y1F

esc{x1 y1F

 Y Draws a filled rectangle As the R command but fills with foreground colour.

N esc{x0 y0 radC

esc{radC

 Y Draws a circle A circle is drawn with the given radius (rad) at the specified x and y co-ordinates.

N esc{x0 y0P

esc{P

 Y Draws a pixel A single pixel is drawn at the given co-ordinates, where no co-ordinates are given a pixel is drawn at
the current co-ordinates.

N esc{x0 y0p Y Moves to pixel This is similar to the ‘P’ command but no pixel is drawn, this command will move the cursor to an
exact pixel and is useful for aligning text for example.

N esc{g Returns current co-
ordinates

Returns the pixel x (horizontal) and y(vertical) co-ordinate pixel values. The format is:

x,y<CR>

I2C: (from 1.5) Returns two bytes representing x and y

Notes

